Wait a moment while we are looking for your question.
.
For every integer n, let an and bn be real numbers. Let function f : R  \rightarrow R be given by f (x) =  \left{\right. a_{n} + sinπx , for \textrm{ }\textrm{ } x \in \textrm{ } \left[\right. 2 n , \textrm{ } 2 n + 1 \left]\right. \\ b_{n} \textrm{ }\textrm{ } + \textrm{ }\textrm{ } cosπx , for \textrm{ }\textrm{ } x \in \textrm{ }\textrm{ } \left(\right. 2 n - 1 , \textrm{ }\textrm{ } 2 n \left.\right) , for all integers n. If  f  is continuous, then which of the following hold(s) for all n?